

Available online at www.sciencedirect.com

Decomposition of NH₃ over Zn–Ti-based desulfurization sorbent promoted with cobalt and nickel

Hee Kwon Jun^a, Suk Yong Jung^a, Tae Jin Lee^b, Chung Kul Ryu^c, Jae Chang Kim^{a,*}

Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, South Korea
 School of Chemical Engineering and Technology, Yeungnam University, Kyongsan 712-749, South Korea
 Korea Electric Power Research Institute, Daejon 305-380, South Korea

Abstract

Zn–Ti-based sorbents promoted with cobalt and nickel additive were prepared by simple physical mixing of single oxides. Their capacities for removing H₂S and NH₃ simultaneously, emitted from coal gasifiers, were investigated in a micro-reactor at 1 atm and 650 °C. NH₃ within the fuel gases did not affect the sulfur removing capacity of the Zn–Ti-based sorbent. The additives, cobalt and nickel, were found to be active components in NH₃ decomposition as well as H₂S absorption, while major components such as ZnO and TiO₂ did not show any activity in the NH₃ decomposition reaction. NH₃ was decomposed over both oxide and sulfide forms of the additives, even though the NH₃ decomposition ability of their sulfides dramatically decreased in the presence of H₂ gas owing to the equilibrium limitation of NH₃ decomposition. In the case of oxide forms, cobalt oxide showed excellent NH₃ decomposition capacity regardless of H₂ concentrations, while the capacity of nickel oxide depended on the H₂ concentrations.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Desulfurization; NH3 decomposition; Zn-Ti based sorbent

1. Introduction

The integrated gasification combined cycle (IGCC) is considered to be one of the most efficient and environmentally acceptable technologies for generating power from coal. To use this technology, it is necessary to remove the pollutants from the coal-derived fuel gas. Among the pollutants, sulfur and nitrogen, which exist in the form of hydrogen sulfide (H_2S) and ammonia (NH_3) under the highly reducing conditions of a gasifier, must be removed from the hot coal gas because both species entering the gas turbine are converted to SO_x and NO_x , which are known

E-mail address: kjchang@knu.ac.kr (J.C. Kim).

precursors of acid rain and whose emission into the atmosphere is limited by strict government regulations. To remove hydrogen sulfide and ammonia from coal-derived gas, several metal oxide materials have been studied to develop regenerable sorbents in highand middle-temperature ranges under the highly reducing conditions of a gasifier [1-25]. However, the roles of additives and supporters have not been clearly defined in these operating conditions because of the lack of identification of new active sites and their mechanisms. In particular, the research for simultaneously removing H₂S and NH₃ on regenerable sorbents requires more effort. The major objectives of this work were to identify any deleterious changes in the ZT-based sorbents caused by NH₃ in a fixed-bed reactor, the role of additives such as cobalt and nickel in the presence of NH₃, and the reaction mechanism for

^{*} Corresponding author. Tel.: +82-53-950-5622; fax: +82-53-950-6615.

the simultaneous removal reaction of H_2S and NH_3 under strong reducing condition at high temperature.

2. Materials and methods

2.1. Preparation of the sorbent

Zinc titanate (ZT) and modified (ZTC, ZTN) sorbents used in this study were prepared by physical mixing. Zinc oxide, titanium dioxide, and cobalt or nickel oxide, of which the particle size was about 200-300 mesh, were sufficiently mixed with an inorganic binder, bentonite, for 1-2 h. Next, a liquid binder, ethylene glycol (EG), was added to the mixture in order to make a slurry. An extruder was used to form pellets with an outer diameter of 1 mm from the slurry. These wet pellets were dried for 4 h to remove EG from the material in a temperature range 250-300 °C. The dried pellets were calcined in a muffle furnace for 12 h at 700 °C, and then ground to particle size in a range 250–300 µm in diameter. The ramping rate of the temperature was maintained at 3 °C/min. The mole ratio of Zn to Ti and the amounts of additives added were fixed at 1.5:1 and 20 wt.%, respectively. In addition, X-ray diffraction (XRD) was performed to identify crystalline phases in the mixed oxides. A Philips XPERT instrument using Cu Kα radiation was used to do so.

2.2. Apparatus and procedure

Multiple cycles of sulfidation/regeneration were performed in a fixed-bed quartz reactor with a diameter of 1 cm placed in an electric furnace. One gram of sorbent was packed into the reactor and the space velocity (SV) was maintained at 5000 h⁻¹ to minimize severe pressure drops and channeling phenomena. All the volumetric flows of gas were measured at standard temperature and pressure (STP) conditions. The temperature of the inlet and outlet lines of the reactor was maintained above 120 °C to prevent condensation of water vapor in the sulfidation processes. The outlet gases from the reactor were automatically analyzed every 8 min by a thermal conductivity detector (TCD) equipped with an autosampler (Valco). The column used in the analysis was a 1/8 in. Teflon tube packed with Porapak T. The conditions of sulfidation and regeneration and the composition of mixed gases are

Table 1 Experimental conditions for Zn–Ti-based sorbents

	Sulfidation	Regeneration
Temperature (°C)	650	800
Pressure (atm)	1	5
Flow rate (ml/min)	50	50
Gas composition (vol.%)		
H_2S	1.0	
H_2	11.7	
CO	9.6	
CO_2	5.2	
N_2	Balance	Balance
O_2		3–5

shown in Table 1. When the H₂S concentration of the outlet gases reached 10,000 ppm, the concentration of H₂S at the inlet stream of mixed gases, an inert nitrogen gas without H₂S, was introduced to purge the system until it reached the regeneration temperature. Finally, nitrogen gas mixed with 3% oxygen was introduced to regenerate the sulfurized sorbents until the SO₂ concentration reached 200 ppm.

3. Results and discussion

3.1. Structure identification

Fig. 1 shows the XRD results of various sorbents before/after H₂S absorption at 650 °C. ZT sorbent before H₂S absorption consists of a separated ZnO and TiO₂ phase without the spinel structure like Zn₂TiO₄ owing to the low calcination temperature. After H₂S absorption, most of the separated ZnO was transformed to ZnS and no unreacted ZnO was observed. It was also found that TiO₂ did not participate in H₂S absorption. The XRD pattern of ZTN before H₂S absorption showed a separated ZnO, TiO2, and NiO phase, but only ZnS and TiO2 were observed without nickel sulfides after H2S absorption. It has already been reported that the nickel sulfide formed after H₂S absorption was amorphous phases [8]. In the case of ZTC sorbent, Co₃O₄ peaks were observed together with the spinel structure in the XRD pattern before H₂S absorption. After H₂S absorption, it was found that most of the metal oxides were transformed to the ZnS/Co₉S₈ without unreacted oxides phases.

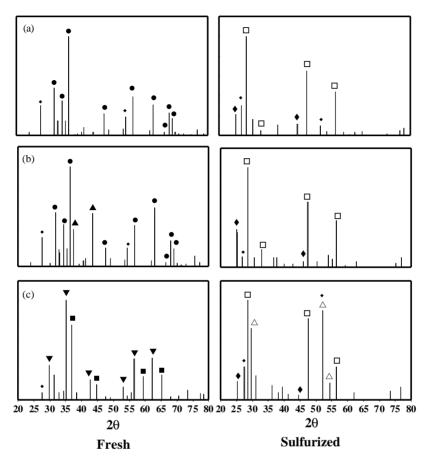


Fig. 1. XRD patterns of various sorbents before/after sulfidation at 650 °C: (a) ZT; (b) ZTC; (c) ZTN; (\bullet) ZnO; (∇) Zn₂TiO₄; (\bullet) TiO₂ (rutile); (\bullet) TiO₂ (anatase); (\blacksquare) Co₃O₄; (\triangle) NiO; (\square) ZnS; (\triangle) Co₉S₈.

3.2. H₂S performance and NH₃ removal

Fig. 2 shows the H₂S breakthrough curves of various Zn–Ti-based sorbents in gas compositions with 5000 ppm of NH₃ and 1% of H₂S at 650 °C. The X-axis and Y-axis indicate reaction time and H₂S concentration emitted from the reactor, respectively. The total sulfur removal capacity calculated from this graph was higher than 25 wt.%, which was similar to the value previously reported [8]. This result indicates that the NH₃ included in the mixed gas does not affect the total sulfur removal capacity of the sorbents under our experimental conditions. Fig. 3 shows NH₃ removing capacity of various sorbents with a reaction time at 650 °C. The ZT sorbent without any promoter showed very low NH₃ decomposition re-

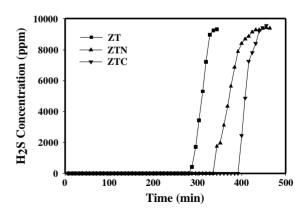


Fig. 2. H₂S breakthrough curves of various sorbents at 650 °C.

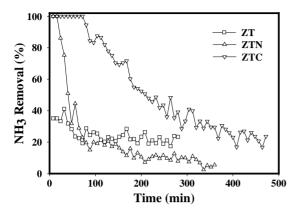


Fig. 3. Decomposition of NH₃ on various sorbents at 650 °C.

activity (20–30% even at initial period). However, in the case of the ZTC and ZTN sorbent, promoted with cobalt and nickel, respectively, 100% of NH₃ decomposition was observed in the initial period and the reactivity gradually decreased with reaction time. In coal-derived gases, the decomposition of NH₃ on these Zn–Ti-based sorbents was not easy because the initial metal oxides were transformed to metal sulfides during the H₂S absorption and H₂ gas prevented the NH₃ decomposition due to the equilibrium limitation.

3.3. Thermal decomposition of NH₃ and the effect of product gas

Fig. 4 shows NH₃ decomposition in the empty reactor as a function of reactor temperature. NH₃ de-

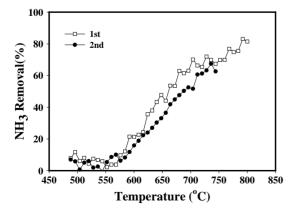


Fig. 4. Thermal decomposition of NH_3 with increasing temperatures in empty reactor.

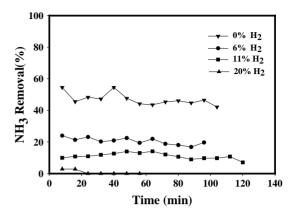


Fig. 5. Thermal decomposition of NH₃ with various H₂ concentrations in empty reactor.

composition was not observed until 550 °C and above 600 °C, gradually increased with temperature. 80% of the NH₃ was decomposed at 800 °C. Considering that most experiments were carried out at 650 °C, about 40% of the NH₃ was removed by thermal decomposition. Because the decomposition of NH₃ generates N₂ and H₂, the presence of H₂ in the reactant mixture was believed to prevent NH3 gas from decomposing. Thermal decomposition of NH₃ was investigated with various H₂ concentrations in an empty reactor at 650 °C. As shown in Fig. 5, thermal decomposition of NH₃ decreased with increasing H₂ concentration and was not observed at H2 concentrations higher than 20%. Considering that 10% of H₂ was contained in our mixed gas, 10% of the NH₃ was decomposed only by thermal reaction. Fig. 6 shows the NH₃ decomposition of various sorbents before H₂S absorption with various H₂ concentrations. The NH₃ decomposition of ZT sorbent showed 0-40% with H₂ concentrations, which was similar to the results observed in the empty reactor. At that time, H₂S was not included with gas compositions. Considering that the ZT sorbent has a separated ZnO and TiO₂ phase as shown in Fig. 1(a), it was found that both ZnO and TiO2 did not participate in NH₃ decomposition at this experimental condition. NH₃ decomposition of the ZTN sorbent showed 100% without H₂, but the reactivity gradually decreased with increased H₂ concentration. In the case of ZTC sorbent, 100% NH₃ was decomposed in an H₂ concentration less than 10%, gradually decreasing with reaction time at H₂ concentrations higher than 20%.

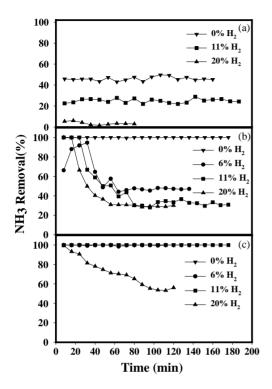


Fig. 6. NH₃ decomposition of various sorbents with various H₂ concentrations: (a) ZT; (b) ZTN; (c) ZTC.

From these results, it was concluded that the cobalt oxide within ZTC sorbent was a better catalyst for the NH₃ decomposition reaction than the nickel oxide in the ZTN sorbent. Fig. 7 shows the NH₃ decomposition of various sorbents at different H2 concentrations after sulfidation with H2S. The NH3 decomposition of ZT sorbent showed 0-40% with H₂ concentration which was similar to the results observed in the empty reactor. This result indicates that ZnS did not participate in NH₃ decomposition. NH₃ decomposition of ZTN and ZTC sorbents was 100% at the initial period and then rapidly dropped with reaction times in the presence of H₂, even though it showed 100 and 75% in the absence of H2 and did not decrease with reaction times. Considering that most of the metal oxides were transformed to metal sulfides after sulfidation, it was thought that the NH₃ decomposition over metal sulfides was less than that over metal oxides. Metal sulfide was affected more severely by H2 compared with metal oxides. The decrease in the NH₃ decomposition over ZTN and ZTC sorbents with reaction

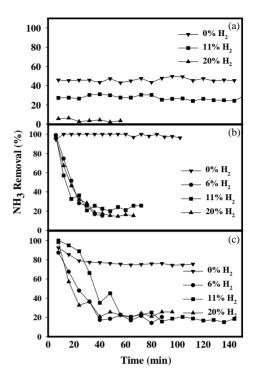


Fig. 7. NH₃ decomposition of various sulfurized sorbents with various H₂ concentrations: (a) ZT; (b) ZTN; (c) ZTC.

time, as shown in Fig. 3, could be explained by deactivation due to the formation of metal sulfides and the effect of hydrogen in the mixed gas.

3.4. Reduction of sorbent

Fig. 8 shows the effect of hydrogen on the NH₃ decomposition of ZTN and ZTC sorbents in the presence of H₂S. As expected, the total sulfur removal capacity of both sorbents did not change. The NH3 decomposition of the ZTC sorbent was 100% at the initial period without H₂. However, as time proceeded, they decreased until 75% which was maintained for a long time, as shown in Fig. 7. This result indicates that cobalt oxides reacted with the H2S and were gradually transformed to cobalt sulfides. In the case of the ZTN sorbent, 100% of the NH₃ was decomposed at initial period and did not change with reaction time. When 10% of the H₂ was introduced into the reactor, the NH₃ decomposition over ZTN sorbent suddenly dropped to 20%, while that of the ZTC sorbent increased to 100% and then dropped to 20%. In addition,

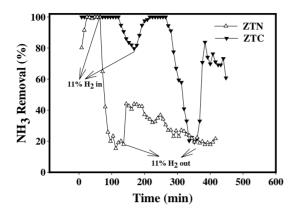


Fig. 8. The effect of hydrogen on the NH_3 decomposition of ZTN and ZTC sorbents.

when the addition of 10% of H₂ was stopped, it was also observed that NH₃ decomposition of the ZTC sorbent was recovered up to 75%, while that of the ZTN sorbent was not completely recovered. To explain the difference in the recovery of the NH₃ decomposition, the NH₃ decomposition on the ZTC and ZTN sorbents reduced with H₂ at 650 °C were investigated. NH₃ was decomposed completely in gas compositions without H₂ whether the sorbents were reduced or not. In the case of the sulfurized sorbent, as shown Fig. 9, ZTC sorbent showed higher reactivity than that of unreduced one, while ZTN sorbent showed 100% decomposition ability regardless of reduction state. Fig. 10 shows the NH₃ decomposition over reduced ZTC and ZTN sorbent in the presence of H₂S. NH₃

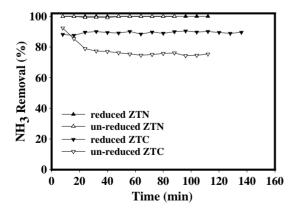


Fig. 9. NH_3 decomposition of the sulfurized ZTN and ZTC sorbent after various treatments in gas compositions without H_2 and H_2S .

was decomposed completely on the reduced ZTC sorbent and the removal capacity was maintained until breakthrough point of 350 min. The increase in the removal capacity from 100 min of oxide sorbent to 350 min of reduced sorbent could be explained by the transformation of cobalt oxides with ZTC to a new reduced phase which could decompose NH₃ more effectively than unreduced oxides, even though the phase was not clearly defined. As shown in Fig. 8, it was concluded that the temporal increase of NH3 decomposition on the ZTC sorbent when 11% hydrogen was injected is due to the phase transformation of the active sites, cobalt oxides and sulfides, to a new phase. In the case of ZTN sorbent, as shown in Fig. 10, NH₃ decomposition of reduced ZTN sorbent showed 60% removal capacity even at initial period and the value gradually decreased into 20% with reaction time. Considering that NH₃ decomposition of ZTN sorbent did not depend on the reduction states of the sorbent under gas compositions without H₂S as shown in Fig. 9, this result could be explained by the following reason: The oxygen within ZTN lattice would be consumed during reduction of sorbent and this reduced ZTN sorbent produces ZnS and H₂O through reaction between ZnO and H2S under gas compositions with H₂S. At that time, if the oxygen within ZTN lattice is not enough, H2O cannot be produced and H2 decomposed from H2S hinders NH3 from decomposing to N₂ and H₂ due to equilibrium limitation. In addition, this phenomenon was not critical over ZTC sorbent, which can be explained that NH₃ decomposition of ZTC sorbent was less effective in the presence of H₂ than ZTN sorbent as shown in Fig. 6.

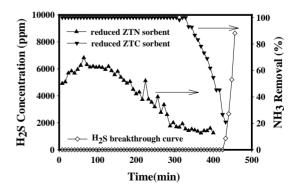


Fig. 10. H_2S breakthrough curve and NH_3 decomposition of reduced ZTC and ZTN sorbent at gas compositions without H_2 .

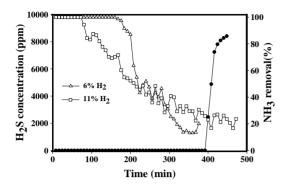


Fig. 11. Simultaneous removal of H₂S and NH₃ with H₂ concentrations

3.5. Simultaneous removal of H₂S and NH₃

Fig. 11 shows the H₂S breakthrough curve and NH₃ decomposition of the ZTC sorbent various H₂ concentrations. The NH₃ decomposition decreased with increasing H₂ concentrations. As shown in the previous results, this could be explained by the fact that NH₃ decomposition was related with the phases (oxide or sulfides) of the sorbent, the reduction of sorbent, and the effect of product gases such as H₂. In the desulfurization process of the IGCC system using fluidized absorption and regeneration beds, if a half-spent sorbent was moved to the regeneration bed, the NH₃ decomposition was 100 and 60% in gas compositions with 6 and 10% H₂, respectively. As a result, we concluded that it was possible to simultaneously remove H₂S and NH₃ gases under strong reducing gas compositions of coal-derived gases.

4. Conclusions

NH₃ in fuel gases did not affect the sulfur removal capacity of Zn–Ti-based sorbents. The additives, cobalt and nickel, were found to be active components in the NH₃ decomposition as well as H₂S absorption, while major components such as ZnO and TiO₂ did not show any activity in the NH₃ decomposition reaction. NH₃ was decomposed over both oxide and sulfide forms of the additives, even though the NH₃ decomposition ability of their sulfides dramatically decreased in the presence of H₂ gas owing to the equilibrium limitations of NH₃ decomposition. In the

case of oxide forms, cobalt oxide showed an excellent NH_3 decomposition capacity regardless of H_2 concentrations, while the capacity of nickel oxide depended on the H_2 concentrations.

Acknowledgements

We appreciate financial support from the R&D Management Center for Energy & Resources (RaCER, Korea) and also in part from Korea Ministry of Science and Technology through the National Research Lab. Program.

References

- [1] K. Jothimurugesan, S.K. Gangwal, Ind. Eng. Chem. Res. 37 (1998) 1929.
- [2] B.S. Turk, R.P. Gupta, US Patent 6,306,793 (2001).
- [3] V. Rajagopalan, M.D. Amiridis, Ind. Eng. Chem. Res. 38 (1999) 3886.
- [4] E. Sasaoka, N. Sada, A. Manabe, Md.A. Uddin, Y. Sakata, Ind. Eng. Chem. Res. 38 (1999) 958.
- [5] R.V. Siriwardane, T. Gardner, J.A. Poston Jr., E.P. Fisher, A. Miltz, Ind. Eng. Chem. Res. 39 (2000) 1106.
- [6] E.M. van Veldhuizen, L.M. Zhou, W.R. Rutgers, Plasma Chem. Plasma Process. 18 (1998) 91.
- [7] E. Sasaoka, M. Hatori, N. Sada, Md.A. Uddin, Ind. Eng. Chem. Res. 39 (2000) 3844.
- [8] H.K. Jun, T.J. Lee, S.O. Ryu, J.C. Kim, Ind. Eng. Chem. Res. 40 (2001) 3547.
- [9] L. Alonso, J.M. Palacios, R. Moliner, Energy Fuels 15 (2001) 1396.
- [10] L. Alonso, J.M. Palacios, Chem. Mater. 14 (2002) 225.
- [11] M. Hatori, E. Sasaoka, Md.A. Uddin, Ind. Eng. Chem. Res. 40 (2001) 1884.
- [12] H.K. Jun, T.J. Lee, J.C. Kim, Ind. Eng. Chem. Res. 41 (2002) 4733.
- [13] J.V. Ibarra, C. Cilleruelo, E. Garcia, M. Pineda, J.M. Palacios, Vib. Spectrosc. 16 (1998) 1.
- [14] R.B. Slimane, J. Abbasian, Ind. Eng. Chem. Res. 39 (2000) 1338.
- [15] T. Hasegawa, M. Sato, Combust. Flame 114 (1998) 246.
- [16] S.K. Gangwal, R.P. Gupta, J.W. Portzer, B.S. Turk, K. Jothimurugesan, in: Proceedings of the Conference on Advanced Coal based Power and Environmental System'97, DOE/FTC-97/1046, 1997.
- [17] G.B. Kim, Y.S. Park, C.K. Ryu, S.H. Cho, G.T. Jin, C.K. Yi, Theories Appl. Chem. Eng. 5 (1999) 3549.
- [18] R.P. Gupta, B.S. Turk, T.C. Merkel, G.N. Krishnan, D.C. Ciero, in: Proceedings of the Conference on 17th Annual Pittsburgh Coal, September 2000.

- [19] S.A. Qader, Q.A. Qader, L.J. Muzio, in: Proceedings of the Advanced Coal-fired Power Systems'96 Review Meeting, July 16–17, 1996.
- [20] W. Mojtahed, J. Abbasian, Fuel 74 (1995) 1698.
- [21] Z.R. Ismagilov, R.A. Shkrabina, S.A. Yashnik, N.V. Shikina, I.P. Andrievskaya, S.R. Khairulin, V.A. Ushakov, J.A. Moulijin, I.V. Babich, Catal. Today 69 (2001) 351.
- [22] S.K. Gangwal, R.P. Gupta, J.W. Portzer, B.S. Turk, G.N. Krishnan, S.L. Hung, R.E. Ayala, in: Proceedings of the Advanced Coal-fired Power Systems'96 Review Meeting, July 16–17, 1996.
- [23] R.E. Ayala, C. Park, US Patent 5,188,811 (1993).
- [24] J. Hepora, P. Simell, Appl. Catal. B 14 (1997) 305.
- [25] W. Wong, N. Padban, Z. Ye, A. Andersson, I. Bjerle, Ind. Eng. Chem. Res. 38 (1999) 4175.